UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Câmpus de Bauru

Plano de Ensino

Curso

2103 - Bacharelado em Ciência da Computação

Ênfase

Identificação

Disciplina

0004615A - Cálculo III

Docente(s)

Luis Antonio da Silva Vasconcellos

Unidade

Faculdade de Ciências

Departamento

Departamento de Matemática

Créditos Carga Horária Seriação ideal

4 60

Pré - Requisito

0004600 - Cálculo I

Co - Requisito

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Câmpus de Bauru

Plano de Ensino

Objetivos

Ao término da disciplina, o aluno deverá ser capaz de:

- Representar e interpretar gráficos de funções de duas variáveis e conjuntos de nível de funções de duas ou três variáveis.
- Calcular limites e determinar a continuidade e diferenciabilidade de funções de várias variávies.
- Calcular e aplicar derivadas parciais, derivadas direcionais, diferencial, vetor gradiente e polinômios de Taylor.
- Determinar máximos e mínimos de funções de variáveis reais, visando aplicações.

Conteúdo

- 1 Funções reais de duas ou mais variáveis reais
- 1.1 Sistema de coordenadas cartesianas retangulares
- 1.2 Representação geométrica das principais superfícies no IR3
- 1.3 Definição
- 1.4 Campos de existência aplicações
- 1.5 Curvas e superfícies de nível
- 2 Limites
- 2.1 Definição, interpretação geométrica, propriedades e regras operatórias
- 2.2 Continuidade
- 3 Derivadas Parciais
- 3.1 Acréscimos parciais e total
- 3.2 Definição interpretação geométrica e aplicações
- 3.3 Cálculo de derivadas parciais
- 3.4 Derivadas parciais de ordem superior
- 3.6 Diferenciabilidade definição; diferencial total; plano tangente
- 3.5 Derivada das funções composta e implícita
- 3.7 Derivada direcional definição e interpretação geométrica; operador gradiente
- 4 Aplicações de Derivadas Parciais Máximos e Mínimos
- 4.1 Problemas geométricos, físicos e de economia
- 4.2 Máximos e Mínimos Condicionados Multiplicadores de Lagrange
- 5 Fórmula de Taylor
- 5.1 Fórmula de Maclaurin

Metodologia

Aulas expositivas teóricas e de exercícios. Trabalhos desenvolvidos individualmente ou em grupos.

Bibliografia

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Câmpus de Bauru

Plano de Ensino

integrais curvilíneas e de superfície. 2. ed., rev. e ampl. São Paulo: Pearson Prentice Hall, 2007. 5. reimpressão de 2011.

STEWART, J. Cálculo. São Paulo: Cengage Learning, c2014. 2 v.

BIBLIOGRAFIA COMPLEMENTAR

SWOKOWSKI, E. W. Cálculo com geometria analítica. 2. ed. São Paulo: Makron, c1995. 2 v. THOMAS, G. B. Cálculo. 11. ed. São Paulo: Pearson Addison Wesley, 2009. v. 2.

Critérios de avaliação da aprendizagem

No texto abaixo, tem-se: MP = Média de Provas; MT = Média de Trabalhos; MF = Média Final. Serão realizadas três provas, cujas notas serão referidas como P1, P2 e P3. As duas primeiras provas têm caráter obrigatório e a terceira, caráter substitutivo. A média de provas obedecerá ao que se descreve nos seguintes casos:

10 Caso: o aluno que efetuar somente as duas primeiras provas terá média de provas MP=(P1+P2)/2. Se desejar ou necessitar realizar a terceira prova, o fará mediante as seguintes situações:

1) se P1 < 5.0 e P2 >= 5.0, então a terceira prova versará sobre o conteúdo da primeira. Neste caso, MP=(P2+P3)/2, mesmo que P1 > P3.

2)se P1 >= 5.0 e P2 < 5.0, então a terceira prova versará sobre o conteúdo da segunda. Neste caso, MP=(P1+P3)/2, mesmo que P2 > P3.

3) se P1 < 5.0 e P2 < 5.0, então a terceira prova versará sobre todo o conteúdo programático das duas primeiras provas do semestre. Neste caso, MP=(P1+P2+P3)/3.

4) se P1 >= 5.0 e P2 >= 5.0, o aluno poderá substituir qualquer uma das notas (P1 ou P2). Assim, o conteúdo programático da terceira prova será aquele referente à prova que será substituída.

A média de provas será a média aritmética das notas P3 (que substituirá P1 ou P2) e da prova que não foi substituída.

20 Caso: Se o aluno realizou apenas a 1a ou a 2a prova, tem-se:

1) se a nota na prova realizada é maior ou igual a 5.0, então a terceira prova versará sobre o conteúdo da prova em que ele faltou e MP será a média aritmética das duas notas obtidas.

2) se a nota na prova realizada é menor do que 5.0, então a terceira prova abrangerá todo o conteúdo programático do semestre e MP será a média aritmética das duas notas obtidas.

3o Caso: Se o aluno realizou apenas uma prova, então MP=P/2, onde P é a nota obtida na prova. A média final da disciplina do termo deverá ser calculada da seguinte forma:

MF = 0.9*MP + 0.1*MT

REGIME DE RECUPERAÇÃO

Será aplicada uma única prova contemplando o conteúdo do semestre e o aluno que obtiver nota igual ou superior a 5.0 será considerado aprovado.

Plano de Ensino

Ementa (Tópicos que caracterizam as unidades do programa de ensino)

Funções reais de duas ou mais variáveis reais. Limites. Derivadas Parciais. Aplicações de Derivadas Parciais

- Máximos e Mínimos. Fórmula de Taylor.

Aprovação

Conselho Curso

Cons. Departamental 05/04/2016

Congregação